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MOTIVATION

l ITER-FEAT is more than a factor of 2 smaller than the ITER-EDA design.  It is
also slightly more elongated and triangular.  How would these changes affect
the physics constraints, hence machine performance ?

l Consistency of ITER-FEAT design is evaluated based on physics models
reflecting our latest understanding from theory and experiment in

— MHD stability

— Transport

— Power exhaust

— Density Control

l Aspects of ITER-FEAT AT (Advanced Tokamak) are also studied with
emphasis on control requirements

l Methodology also used in recent ARIES-AT study [1]

[1] Chan et al, APS 1999
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OUTLINE/SUMMARY

ITER-FEAT Reference Design

l Ideally stable to high, intermediate, and low n modes without a conducting wall

l Transport simulations using the GLF23 model indicate that a pedestal temperature
of 4.5 keV is required to reach Q = 10 and Pfus = 400 MW

l Density can exceed the Greenwald limit while still remain compatible with good
confinement and safe heat exhaust with a  modest density peaking factor similar to
that of a typical DIII-D ELMing H-mode discharge

ITER-FEAT AT Design

l Ideally unstable without a conducting wall and stable with a wall at 1.3a

l n =1 resistive wall modes can be completely stabilized with sufficient number and
coverage of flux conserving intelligent coils

l Impurity seeding is ineffective to raise the core radiated power due to lower density

l Higher triangularity can affect  heat loading at non-divertor locations
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ITER-FEAT REFERENCE AND AT  EQUILIBRIA ARE
ESTABLISHED USING THE CORSICA CODE

* Campbell, APS 2000

Campbell* Corsica Corsica

FEAT FEAT FEAT-AT

Ip (MA) 15 15 10
Bo (T) 5.3 5.3 5.3
R (m) 6.2 6.2 6.33
a (m) 2.0 2.0 1.87
R/a 3.1 3.1 3.39

x 1.85 1.85 1.93
x 0.49 0.56 0.623

q0 1.1 2.4
q95 3 2.98 4.29

t (%) 2.5 2.5 3.3
n 1.8 1.75 3.2

Gribov et al,  IAEA  2000
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BOTH THE REFERENCE AND THE AT DESIGNS ARE
STABLE TO THE HIGH n IDEAL BALLOONING MODES

l Also stable to intermediate n modes

l Low n modes are stabilized by a close fitting conducting wall

l Plasma edge opens up to second ballooning stability region when an edge pedestal
is added to the reference design
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THE AT DESIGN IS UNSTABLE TO n = 1 MODE WITHOUT A
CONDUCTING WALL AND STABLE WITH A WALL

l N
NO_WALL= 2.45 for AT equilibrium, reference design is stable without a wall

l AT design stable to n = 2,3 modes without a wall at N = 3.2

l Low n modes computed using GATO

n = 1

N = 3.2
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n = 1 RESISTIVE WALL MODES CAN BE COMPLETELY
STABILIZED BY FLUX CONSERVING INTELLIGENT COILS

l Currents in the coils are utilized to replenish the perturbed radial flux diffused
through the resistive wall

l Evaluated using GATO and VACUUM with an extended energy principle

l Unstable modes can slip through 1 coil at large poloidal coverage

5 Coils

No Wall

Ideal
Wall

1 Coil

DIII-D
ITER-FEAT
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RESISTIVE WALL MODES ARE CONTROLLED
IN DIII-D USING THE C COILS

l 6 segments connected to produce a n = 1 magnetic field
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ARIES-AT RWM FEEDBACK COIL DESIGN IS BASED ON
THE DIII-D C-COIL CONFIGURATION

l 16-22.5  wide toroidally, 60
wide poloidally, outboard

l BR ~ 150 G at vessel

l 8 MW reactive power, 6 MW
dissipated power

l BR  sensor loops needed as
close to plasma as possible
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DRIFT-WAVE BASED TRANSPORT MODELS LIKE GLF23 ARE APPROACHING
A PREDICTIVE CAPABILITY FOR CORE TEMPERATURE PROFILES

l Transport fluxes due to drift wave turbulence are computed using quasi-linear theory
and a saturation rule

l Linear ITG, TEM, ETG  modes are computed using the gyro-Landau fluid approximation

l The quench rule is used to include the effect of ExB flow shear

DIII-D AT DischargeDIII-D Neon-seeded Discharge

With ExB 

Without ExB 

NH89~ 10  

Murakami, IAEA 2000 Luce, IAEA 2000
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GLF23 SIMULATIONS INDICATE THAT A PEDESTAL
TEMPERATURE OF 4.5 keV IS REQUIRED TO REACH Q = 10
l Predicted pedestal temperature requirement of  4.5 keV is higher than the 3.5 keV

estimated for the original ITER

Q = 10

l A too peaked  ne profile lowers performance,
destabilization of TEM

l Higher nPED may reduce required TPED

 J
Higher ne



DIII–D
D̂  = 1020 cm2/s
2.9 MW
nped = 8¥1013 cm–3

ITER
D̂  = 833 cm2/s
73 MW
nped = 8.7¥1013 cm–3

ITER
D̂  = 1470 cm2/s
153 MW
nped = 9¥1013 cm–3
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l	 Experiment shows H89P ª 2 is compatible�
	with n e Ò nGW º 1014

l	 Divertor power balance limit requires nsep    µ Pa

ITER-FEAT CAN OPERATE ABOVE GREENWALD IN H–MODE

081-01/jy QTYUIOP

m–3

nPED µ nSEP

Ip

(MAX) 5/7

1/2
l	 Experiment and theory show with gas fueling

l	 Modest peaking allows ne Ò nGW

pa2

—	 nPED ª 0.75 nGW possible in ITER-FEAT



GREENWALD LIMIT IS EXCEEDED IN HIGH CONFINEMENT H–MODE
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S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY

l	 During density rise,�
	stored energy increases�
	monotonically after an�
	initial dip, eventually�
	exceeding its peak�
	value at low density

l	 Density rises mono-
	tonically during gas�
	fueling, with no�
	evidence of sturation

l	 High confinement�
	phase is terminated�
	after the onset of�
	3/2 MHD mode

081-01/jy

Mahdavi IAEA 2000 QTYUIOP
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STORED ENERGY IS PROPORTIONAL TO THE PEDESTAL�
PRESSURE AND INSENSITIVE TO DENSITY

�

T(r) = TPED ¶(r) fi WTotal µ pPED g(n0/nPED)�

l	 GKS indicates ITG is fastest growing mode
l	 GLF23 transport simulation gives stiff T profile�
	in agreement with experiment

S A N  D I E G O

DIII–D
NATIONAL FUSION FACILITY 081-01/jyT. Osborne, APS 2000
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R/a (m)/(m) 6.6/1.6
BT (T) 4.98
Ip (MA) 7.8
<ne> (1020 m-3) 0.78
bN 3.17
Pa + Paux (MW) 121
Q = Pfus/Paux 5,2
Zeff 1.66
ICD/Ip (%) 46.4
Ibs/Ip (%) 53.6
q95 4.1
HH(98y,2) 1.49

CAN A RADIATIVE CORE SIGNIFICANTLY REDUCE EXCESS �
POWER FLOW TO THE ITER-FEAT AT DIVERTOR ?

l	 Consider ARGON, KRYPTON, and XENON as “seed” candidates

l	 PR,core = Ú nenimp frad(Te) dV

l	 q^ ª (PIN – PR,core) ¥ fout/T ¥ (1–fPFR) ¥ sina

2p Rosp ¥ d ¥ fexp

—	 Assume nHe/ne = 0.04 and nBe/ne = 0.02
—	 Maintain Zeff £ 2
—	 Reliance only on core radiation

Where
PIN = 121 MW	 	R osp ~ 5.5 m
fout/T ~ 0.6	 	 d ~ 1.3 cm
fPFR ~ 0.1		 	f exp ~ 5
a = 30°

081-01/jy
QTYUIOP
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IMPURITY RADIATION FROM THE MAIN PLASMA WOULD NOT BY
ITSELF BE SUFFICIENT TO REDUCE PEAK HEAT FLUX TO�
£ 5 MW/m2 UNDER ATTACHED DIVERTOR CONDITIONS

081-01/jy
QTYUIOP

l	 For the low density ITER-FEAT AT, core impurity radiation by itself would�
	not be adequate to reduce q ^ ²  5 MW/m2

l	 Modeling based on a device similar to ITER-FEAT* suggests that a detached�
	solution for the 120 MW example may be possible in producing required lower�
	heat flux

l	 Critical issue: Is detachment consistent with an AT “high performance”�
	edge plasma?

—	 Kr best, but still q^ ª 10 MW/m2

—	 “Radiating mantle” is more effective at higher densities (e.g., ARIES-AT)

—	 Divertor connection length in ITER-FEAT AT greater than modeled�
	case Æ Additional cooling expected between X–point and divertor

* A. Kukushkin, as shown in Technical Basis for ITER-FEAT Outline Design, (G A) R1 2 00-01018 R1-0),
Chapter 1 , Section 2.

p

p



l	 Good economics for future tokamak designs depend on sufficiently�
	high tE and bT Æ increase plasma triangularity (dT)

l	 One cost of raising dT in an ITER FEAT AT device: Higher heat loading�
	at a non-divertor location

l	 Estimate heat loading near the upper inboard corner for an ITER�
	FEAT AT plasma at maximum dT but preserving LSN shape

CHANGES IN THE UPPER TRIANGULARITY OF ITER FEAT-AT�
PLASMAS AFFECT HEAT LOADING AT NON-DIVERTOR LOCATIONS

081-01/jy
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PRELIMINARY RESULTS SUGGEST THAT CAUTION IS NEEDED�
WHEN EXTENDING ITER FEAT-AT PLASMA PERFORMANCE BY

INCREASING UPPER TRIANGULARITY

081-01/jy
QTYUIOP

Nominal Case Highest Triangularity

q^ ²  0.2 MW/m2

Pdiv,up ²  5 MW
q^ ª 6 MW/m2

Pdiv,up ª 50 MW

p p

dUP,95 = 0.34
dRsep ª 4 cm
frad ~ 0.2
fPFR ~ 0.1�
a ~ 45°�
R ~ 4.6 m�
d ~ 1.3 cm
fexp ~ 13

dUP,95 = 0.46
dRsep ª 0 cm
frad ~ 0.2
fPFR = 0.1�
a ~ 65°�
R ~ 4.45 m�
d ~ 1.3 cm
fexp ~ 12
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SUMMARY

ITER-FEAT Reference Design

l Ideally stable to high, intermediate, and low n modes without a conducting wall

l Transport simulations using the GLF23 model indicate that a pedestal temperature
of 4.5 keV is required to reach Q = 10

l Pedestal density can exceed the Greenwald limit by 30% while still remain
compatible with good confinement and safe heat exhaust with a  density peaking
factor similar to that of a typical DIII-D ELMing H-mode discharge

ITER-FEAT AT Design

l Ideally unstable without a conducting wall and stable with a wall at 1.3a

l n =1 resistive wall modes can be completely stabilized with sufficient number and
coverage of flux conserving intelligent coils

l Impurity seeding is ineffective to raise the core radiated power due to lower density

l Higher triangularity can increase heat loading at non-divertor locations
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CONTROL AND DESIGN ISSUES

l Stabilization of resistive wall modes for AT design

— Feedback control using external coils, magnetic sensors

∗ A major element of DIII-D AT program

— Error fields, NTM

— Rotational source ?

l Scaling of edge pedestal width and height

— Improved understanding of edge stability

— Trade off between confinement and heat flux requirements

l Acceptable divertor heat flux

— Consistency of detached or partially detached divertor with AT edge

∗ Current drive, bootstrap current

— Increase of localized heat loading with higher upper triangularity

— Improved understanding of ELM physics


